admin / 17.05.2019

Освещение для помещения

Общие сведения

Освещенность — это световая величина, которая определяет количество света, попадающего на определенную площадь поверхности тела. Она зависит от длины волны света, так как человеческий глаз воспринимает яркость световых волн разной длины, то есть разного цвета, по-разному. Освещенность вычисляют отдельно для волн разной длины, так как люди воспринимают свет с длиной волны в 550 нанометров (зеленый), и цвета, находящиеся рядом в спектре (желтый и оранжевый), как самые яркие. Свет, образуемый более длинными или короткими волнами (фиолетовый, синий, красный) воспринимается, как более темный. Часто освещенность связывают с понятием яркости.

Освещенность обратно пропорциональна площади, на которую падает свет. То есть, при освещении поверхности одной и той же лампой, освещенность большей площади будет меньше, чем освещенность меньшей площади.

Разница между яркостью и освещенностью

ЯркостьОсвещенность

В русском языке слово «яркость» имеет два значения. Яркость может означать физическую величину, то есть характеристику светящихся тел, равную отношению силы света в определенном направлении к площади проекции светящейся поверхности на плоскость, перпендикулярную этому направлению. Также она может определять более субъективное понятие об общей яркости, которое зависит от многих факторов, например особенностей глаз того, кто смотрит на этот свет, или количества света в окружающей среде. Чем меньше света вокруг, тем ярче кажется источник света. Чтобы не путать эти два понятия с освещенностью стоит запомнить, что:

яркость характеризует свет, отраженный от поверхности светящегося тела или посылаемый этой поверхностью;

освещенность характеризует падающий на освещаемую поверхность свет.

В астрономии яркость характеризует как излучающую (звезды), так и отражающую (планеты) способность поверхности небесных тел и измеряется по фотометрической шкале звездных яркостей. Причем, чем ярче звезда, тем меньше величина ее фотометрической яркости. Самые яркие звезды имеют отрицательную величину звездной яркости.

Единицы измерения

Освещенность чаще всего измеряют в единицах СИ люксах. Один люкс равен одному люмену на квадратный метр. Те, кто предпочитают метрическим единицам имперские, используют для измерения освещенности фут-канделу. Часто ее применяют в фотографии и кино, а также в некоторых других областях. Фут в названии используется потому, что одна фут-кандела обозначает освещенность одной канделой поверхности в один квадратный фут, которую измеряют на расстоянии одного фута (чуть больше 30 см).

Экспонометр «Сверловск-4», сделанный в СССР в 80-x

Фотометр

Фотометр — это устройство, которое измеряет освещенность. Обычно свет поступает на фотодетектор, преобразуется в электрический сигнал и измеряется. Иногда встречаются фотометры, которые работают по другому принципу. Большая часть фотометров показывают информацию об освещенности в люксах, хотя иногда используются и другие единицы. Фотометры, называемые экспонометрами, помогают фотографам и операторам определить выдержку и диафрагму. Кроме этого фотометры используют для определения безопасной освещенности на рабочем месте, в растениеводстве, в музеях, и во многих других отраслях, где необходимо знать и поддерживать определенную освещенность.

Освещенность в фото- и видеосъемке

Видеосъемка

В большинстве современных камер имеются встроенные экспонометры, упрощающие работу фотографа или оператора. Экспонометр необходим для того, чтобы фотограф или оператор могли определить, сколько света нужно пропустить на пленку или фотоматрицу в зависимости от освещенности снимаемого объекта. Освещенность в люксах преобразуется экспонометром в возможные комбинации выдержки и диафрагмы, которые потом выбираются вручную или автоматически, в зависимости от того, как настроена камера. Обычно предлагаемые комбинации зависят от настроек в камере, а также от того, что фотограф или оператор хочет изобразить. В студии и на съемочной площадке часто используют внешний или встроенный в камеру экспонометр, чтобы определить, достаточно ли освещения обеспечивают используемые источники света.

Для получения хороших фотографий или видеоматериала в условиях плохого освещения на пленку или фотоматрицу должно попасть достаточное количество света. Этого не трудно добиться с помощью фотоаппарата — нужно только установить правильную экспозицию. С видеокамерами дело обстоит сложнее. Для видеосъемки высокого качества обычно нужно устанавливать дополнительное освещение, иначе видео будет слишком темным или с сильным цифровым шумом. Это не всегда возможно. Некоторые видеокамеры специально разрабатывают для съемки в условиях слабой освещенности.

Камеры, предназначенные для съемки в условиях слабой освещенности

Камера и объектив для сотового телефона

Есть два вида камер для съемок в условиях слабой освещенности: в одних используется оптика более высокого уровня, а в других — более совершенная электроника. Оптика пропускает больше света в объектив, а электроника лучше обрабатывает даже тот малый свет, что попадает в камеру. Обычно именно с электроникой связаны проблемы и побочные эффекты, описанные ниже. Светосильная оптика позволяет снять видео более высокого качества, но ее недостатки — дополнительный вес из-за большого количества стекла и значительно более высокая цена.

Объектив и фотоматрица типа ПЗС 1/1,7 дюймов (7,60 x 5,70 мм) для компактной камеры

Кроме этого, на качество съемки влияет установленная в видео- и фотокамерах одноматричная или трехматричная фотоматрица. В трехматричной матрице весь поступающий свет делится с помощью призмы на три цвета — красный, зеленый и синий. Качество изображения в темных условиях лучше в трехматричных камерах, чем в одноматричных, так как при прохождении через призму рассеивается меньше света, чем при его обработке фильтром в одноматричной камере.

Существует два основных вида фотоматриц — на приборах с зарядовой связью (ПЗС) и выполненные на основе КМОП-технологии (комплементарный металлооксидный полупроводник). В первом обычно установлен датчик, на который поступает свет, и процессор, который обрабатывает изображение. В КМОП-матрицах датчик и процессор обычно объединены. В условиях недостаточного освещения камеры с ПЗС-матрицами обычно дают изображение лучшего качества, а достоинства КМОП-матриц в том, что они дешевле и потребляют меньше энергии.

Полноформатная фотоматрица типа КМОП размером 24 x 36 мм для профессиональной цифровой зеркальной камеры Canon 5D Mark II

Размер фотоматрицы также влияет на качество изображения. Если съемка происходит с малым количеством света, то чем больше матрица — тем лучше качество изображения, а чем меньше матрица — тем больше проблем с изображением — на нем появляется цифровой шум. Большие матрицы устанавливают в более дорогих камерах, и для них необходима более мощная (и, как следствие — тяжелая) оптика. Фотокамеры с такими матрицами позволяют снимать профессиональное видео. Например, в последнее время появился ряд фильмов полностью снятых на такие камеры как Canon 5D Mark II или Mark III, у которых размер матрицы — 24 x 36 мм.

Производители обычно указывают, в каких минимальных условиях может работать камера, например при освещенности от 2 люкс. Эта информация не стандартизирована, то есть производитель решает сам, какое видео считать качественным. Иногда две камеры с одним и тем же показателем минимальной освещенности дают разное качество съемки. Альянс отраслей электронной промышленности EIA (от английского Electronic Industries Association) в США предложил стандартизированную систему определения светочувствительности камер, но пока он используется только некоторыми производителями и не принят повсеместно. Поэтому часто, чтобы сравнить две камеры с одинаковыми световыми характеристиками, нужно испробовать их в действии.

На данный момент любая камера, даже рассчитанная на работу в условиях низкой освещенности, может давать картинку низкого качества, с высокой зернистостью и послесвечением. Чтобы решить некоторые из этих проблем возможно предпринять следующие шаги:

Если света недостаточно и объект статичный, лучшие результаты получаются, если установить камеру на штатив

  • Снимать на штативе;
  • Работать в ручном режиме;
  • Не использовать режим переменного фокусного расстояния, а вместо этого перенести камеру как можно ближе к объекту съемки;
  • Не использовать автоматическую фокусировку и автоматический выбор ISO — при большей величине ISO увеличивается шум;
  • Снимать с выдержкой в 1/30;
  • Использовать рассеянный свет;
  • Если нет возможности установить дополнительное освещение, то использовать весь возможный свет вокруг, например уличные фонари и лунный свет.

Несмотря на отсутствие стандартизации о чувствительности камер к освещенности, для ночной съемки все равно лучше выбрать камеру, на которой указано, что она работает при 2 люкс или ниже. Также следует помнить, что даже если камера действительно хорошо снимает в темных условиях, ее чувствительность к освещенности, указанная в люксах — чувствительность к свету, направленному на объект, но камера на самом деле получает свет, отраженный от объекта. При отражении часть света рассеивается, и чем дальше камера от объекта — тем меньше света попадает в объектив, что ухудшает качество съемки.

Экспозиционное число

Одна и та же фотография с разными экспозиционными числами

Экспозиционное число (англ. Exposure Value, EV) — целое число, характеризующее возможные комбинации выдержки и диафрагмы в фото, кино- или видеокамере. Все сочетания выдержки и диафрагмы, при которых на пленку или светочувствительную матрицу попадает одинаковое количество света, имеют одинаковое экспозиционное число.

Несколько комбинаций выдержки и диафрагмы в камере при одном и том же экспозиционном числе позволяют получить примерно одинаковое по плотности изображение. Однако изображения при этом будут различными. Это связано с тем, что при разных значениях диафрагмы глубина резко изображаемого пространства будет различной; при разных значениях выдержки изображение на пленке или матрице будет находиться разное время, в результате чего оно будет в разной степени смазано или совсем не смазано. Например, сочетания f/22 — 1/30 и f/2.8 — 1/2000 характеризуются одним и тем же экспозиционным числом, но первое изображение будет иметь большую глубину резкости и может оказаться смазанным, а второе будет иметь малую глубину резкости и, вполне возможно, совсем не будет смазанным.

На левом снимке за счет длинной выдержки подчеркнуто движение воды, в то время как на правом снимке за счет относительно короткой выдержки движение не так заметно и вода изображена резко

Бóльшие значения EV используются, если объект съемки лучше освещен. Например, экспозиционное число (при светочувствительности ISO 100) EV100 = 13 можно использовать при съемке ландшафта, если на небе имеется облачность, а EV100 = –4 годится для съемки яркого полярного сияния.

По определению,

EV = log2 (N2/t)

или

2EV = N2/t, (1)

    где

  • N — диафрагменное число (например: 2; 2,8; 4; 5,6, и т. д.)
  • t — выдержка в секундах (например: 30, 4, 2, 1, 1/2, 1/4, 1/30, 1/100, и т. д.)

Зависимость глубины резкости от величины диафрагмы при одном и том же экспозиционном числе

Например, для комбинации f/2 и 1/30, экспозиционное число

EV = log2(22/(1/30)) = log2(22 × 30) = 6.9 ≈ 7.

Это число может быть использовано для съемки ночных сцен и освещенных витрин. Комбинация f/5.6 с выдержкой 1/250 дает экспозиционное число

EV = log2 (5.62/(1/250)) = log2 (5.62 × 250) = log2 (7840) = 12.93 ≈ 13,

которое можно использовать для съемки пейзажа с облачным небом и без теней.

Следует отметить, что аргумент логарифмической функции должен быть безразмерным. В определении экспозиционного числа EV игнорируется размерность знаменателя в формуле (1) и используется только численное значение выдержки в секундах.

Одинаковое экспозиционное число 12 установлено на пленочной камере Зенит-ЕТ и цифровой камере Canon 5D Mark II

Взаимосвязь экспозиционного числа с яркостью и освещенностью объекта съемки

Определение экспозиции по яркости света, отраженного от объекта съемки

Определение экспозиции путем измерения люксметром отраженного от объекта съемки света

При использовании экспонометров или люксметров, измеряющих отраженный от объекта съемки свет, выдержка и диафрагма связаны с яркостью объекта съемки следующим соотношением:

N2/t = LS/K (2)

Здесь

  • N — диафрагменное число;
  • t — выдержка в секундах;
  • L — усредненная яркость сцены в канделах на квадратный метр (кд/м²);
  • S — арифметическое значение светочувствительности (100, 200, 400, и т. д.);
  • K — калибровочный коэффициент экспонометра или люксметра для отраженного света; Canon и Nikon используют K = 12.5.

Из уравнений (1) и (2) получаем экспозиционное число

EV = log2 (LS/K)

или

2EV = LS/K

При K = 12,5 и ISO 100, имеем следующее уравнение для яркости:

2EV = 100L/12.5 = 8L

L = 2EV/8 = 2EV/23 = 2EV–3.

Эта формула используется в конвертере для преобразования экспозиционного числа в кд/м² и наоборот.

Определение экспозиции по освещенности объекта съемки (падающий свет)

Определение экспозиции путем измерения люксметром света, падающего на объект съемки

При использовании экспонометров или люксметров, измеряющих падающий на объект съемки свет, выдержка и диафрагма связаны с освещенностью объекта съемки следующим соотношением:

N2/t = ES/C,

где

  • N — диафрагменное число;
  • t — выдержка в секундах;
  • E — усредненная освещенность сцены, измеренная в люксах;
  • S — арифметическое значение светочувствительности (100, 200, 400, и т. д.);
  • C — калибровочный коэффициент экспонометра или люксметра для отраженного света; обычно используется C = 250.

При C = 250 and ISO 100, получаем следующую зависимость экспозиционного числа от освещенности объекта съемки:

2EV = ES/C = 100/250 E = 0.4 × E

E = 2.5 × 2EV.

Эта формула используется в конвертере освещенности для преобразования экспозиционного числа в люксы и наоборот.

Следует отметить, что если посмотреть на таблицу соответствия экспозиционных чисел и яркости (для ISO 100 и K = 12.5) и освещенности (для ISO 100 и C = 250) объекта съемки, можно подумать, что она допускает прямое преобразование кд/м² в люксы и наоборот. Однако это не так, поскольку в люксах измеряется освещенность, то есть, количество света, падающее на поверхность, в то время как канделы на кв. метр используются для измерения яркости объекта, то есть, отраженного от поверхности объекта света. Количество отраженного света, то есть, яркость объекта, определяется свойствами поверхности объекта и ее текстурой. Например, поверхность, покрытая черным бархатом, может быть освещена очень ярким источником света, но при этом иметь очень низкую яркость. В то же время, белый автомобиль с глянцевой поверхностью может иметь большую, чем черный бархат, яркость при более слабом освещении. Фотографы знают, как трудно снять модель в черном бархатном платье на фоне белого автомобиля и наоборот, модель в белом свадебном платье на фоне черного автомобиля.

Пример условий освещения, при которых это экспозиционное число можно использовать

Конвертер яркости Конвертер освещённости Пример условий освещения, при которых это экспозиционное число можно использовать
EV кд/м² fL лк фут·кд
-4 0,008 0,0023 0,156 0,015 Яркое полярное сияние
-3 0,016 0,0046 0,313 0,029 Пейзаж при освещении лунным светом, полная луна
-2 0,031 0,0091 0,625 0,058 Пейзаж при освещении лунным светом, полная луна
-1 0,063 0,018 1,25 0,116 Пейзаж при освещении лунным светом, полная луна, легкая облачность
0 0,125 0,036 2,5 0,232 Плохо освещенное помещение
1 0,25 0,073 5 0,465 Здания вдали или пейзаж с силуэтами на фоне неба при слабом
2 0,5 0,146 10 0,929 Здания вдали при искусственном освещении
3 1 0,292 20 1,86 Архитектура при искусственном освещении
4 2 0,584 40 3,72 Рождественская елка или улицы, освещенные фонарями
5 4 1,17 80 7,43 Автомобили ночью
6 8 2,33 160 14,9 Витрины ночью
7 16 4,67 320 29,7 Ночные улицы
8 32 9,34 640 59,5 Ночные улицы с ярким искусственным освещением
9 64 18,7 1280 119 Пожары, костры, спорт при искусственном освещении
10 128 37,4 2560 238 Неоновая реклама
11 256 74,7 5120 476 Пейзажи сразу после заката
12 512 149 10240 951 Пейзажи во время заката или при сильной сплошной облачности
13 1024 299 20480 1903 Пейзажи перед закатом
14 2048 598 40960 3805 Пейзажи при солнечном свете и сильно загрязненной атмосфере (дымом пожаров или выхлопными газами)
15 4096 1195 81920 7611 Пейзажи при хорошем солнечном освещении
16 8192 2391 163840 15221 Снежные пейзажи или пустыня при солнечном освещении

Подробнее об экспозиционном числе.

Освещенность и музейные экспонаты

Статуя в Версальском дворце, Франция

Скорость, с которой ветшают, выцветают и иным образом портятся музейные экспонаты, зависит от их освещенности и от силы источников света. Сотрудники музеев измеряют освещенность экспонатов, чтобы убедиться, что на экспонаты попадает безопасное количество света, а также и для того, чтобы обеспечить достаточно света для посетителей, чтобы они могли хорошо рассмотреть экспонат. Освещенность можно измерить фотометром, но во многих случаях это бывает нелегко, так как он должен находиться как можно ближе к экспонату, а для этого часто необходимо убрать защитное стекло и выключить сигнализацию, а также получить на это разрешение. Чтобы облегчить задачу, работники музея часто пользуются фотоаппаратами как фотометрами. Конечно, это не замена точным измерениям в ситуации, где найдена проблема с количеством света, который попадает на экспонат. Но для того, чтобы проверить, нужна ли более серьезная проверка с фотометром, фотоаппарата вполне достаточно.

Экспозиция определяется фотоаппаратом на основе показаний об освещенности, и, зная экспозицию, можно найти освещенность, проделав ряд несложных вычислений. В этом случае сотрудники музеев пользуются либо формулой, либо таблицей с переводом экспозиции в единицы освещенности. Во время вычислений не стоит забывать, что камера поглощает часть света, и учитывать это в конечном результате.

Садоводы знают, что разные растения требуют разное количество света; для оценки освещенности растений можно использовать люксметры

150 (X) * 20 (Y) * 1 (Z) = 3000 Люмен.

Теперь согласно таблице №2 подбираем лампу, которая подойдет в установленные осветительные приборы, и которыми мы хотим осветить нашу комнату. Предположим, мы берем все лампы в 10 Ватт, имеющие световой поток в 800 Люмен, то для освещения нашей комнаты такими светодиодными лампами нам потребуется не менее 3000/800=3,75 лампочек. В результате математического округления получаем 4 лампочки по 10 Ватт.

Важно помнить, что желательно в помещении добиться равномерного распределения света. Для этого лучше располагать несколькими источниками света. В случае если вы планируете создавать художественное освещение с несколькими светильниками, монтируемыми в потолок, мы советуем использовать 8 светодиодных лампочек по 5 Ватт каждая и равномерно распределить их по потолку.

Обратите внимание то за основу производимых расчетов мы взяли нормы СНиП принятые в нашей стране. Поскольку нормы эти разработаны и приняты были давно, многие наши клиенты говорят, что уровень освещения согласно этих норм для них мал и света явно недостаточно. Поэтому мы рекомендуем увеличивать эти нормы в 1,5-2 раза при этом устанавливая несколько выключателей, разделяя их по зонам помещения и по количеству светильников. Это позволит включить часть светильников и получить мягкое, не очень яркое освещение, а в случае необходимости, включить полное яркое освещение.

Submit a Comment

Must be required * marked fields.

:*
:*