admin / 08.07.2018

Как рассчитать длину крыши

3.2. Расчет стропильной ноги

Сбор нагрузок

Предварительно, для определения нагрузок, задаемся сечением стропильной ноги 75х225 мм. Постоянная нагрузка на стропильную ногу подсчитана в табл. 3.2.

Таблица 3.2 Расчетная постоянная нагрузка на стропильную ногу, кПа

Эксплуата-

Предельное

Элементы и нагрузки

ционное

γfm

значение

значение

нагрузки

нагрузки

Нагрузка на обрешетку (табл. 3.1)

0,283

0,305

Стропильная нога 0,075*0,225*5/0,95

0,089

1,1

0,098

Всего

g стр.е=0,372

g cтр.m = 0,403

Расчетная предельная нагрузка на стропильную ногу (сочетание постоянная плюс снеговая)

Геометрическая схема стропил

Схемы к расчету стропильной ноги показаны на рис. 3.2. При ширине коридора в осях =3,4 м расстояние между продольными ося­ми наружной и внутренней стен.

Расстояние между осями мауэрлата и лежня с учетом привязки к оси ( =0,2 м)м. Устанавливаем подкос под углом β = 45° (уклонi2 = 1). Уклон стропил равен уклону кров­ли i1 =i = 1/3 = 0,333.

Чтобы определить необходимые для расчета размеры можно вычертить геометрическую схему стропил в масштабе и измерять расстояния линейкой. Если мауэрлат и лежень находятся на одном уровне, то пролеты стропильной ноги можно определить по формулам

Высоты узлов h1 =i1l1 =0,333*4,35=1,45 м; h2: = i1l=0,333*5,8=1,933 м. Отметку высоты: ригеля принимаем на 0,35 м ниже точки пересечения осей стропильной ноги и стойки h = h2- 0,35 (м) = 1,933 -0,35 = 1,583 м.

Усилия в стропильной ноге н ригеле

Стропильная нога работает как трехпролетная неразрезная балка. Просадки опор могут изменять опорные моменты в неразрезных балках. Если считать, что от просадки опоры изгибающий момент на ней стал равным нулю, то мож­но условно врезать шарнир в место нулевого момента (над опорой). Для расчета стропильной ноги с некоторым запасом прочности считаем, что просадка под­коса снизила до нуля опорный изгибающий момент над ним. Тогда расчетная схема стропильной ноги будет соответствовать рис. 3.2, в.

Изгибающий момент в стропильной ноге

Для определения распора в ригеле (затяжке) считаем, что опоры просели та­ким образом, что опорный момент над подкосом равен М1 а над стойками -нулю. Условно врезаем шарниры в места нулевых моментов и рассматриваем среднюю часть стропил как трехшарнирную арку пролетом lcp = 3,4 м. Распор в такой арке равен

Вертикальная составляющая реакции подкоса

Используя схему рис. 3.2.г, определим усилие в подкосе

Рис. 3.2. Схемы для расчета стропил

а-поперечный разрез чердачного покрытия; б -схема для определения рас­четной длины стропильной ноги; в — расчетная схема стропильной ноги; г — схема для определения распора в ригеле; л — тоже для схемы с одной про­дольной стеной; 1 — мауэрлат; 2 — лежень; 3 — прогон; 4 — стропильная нога; 5 -стойка; 6 — подкос; 7 — ригель (затяжка); 8 — распорка; 9, 10 -упорные бруски; 11 — кобылка; 12 — накладка.

Расчет стропильной ноги по прочности нормальных сечений

Требуемый момент сопротивления прогона

По прил. М принимаем ширину стропильной ноги b = 5 см и находим тре­буемую высоту сечения

По прил. М принимаем доску сечением 5х20 см.

В проверке прогибов стропильной ноги нет необходимости так как она на­ходится в помещении с ограниченным доступом людей.

Расчет стыка досок стропильной ноги.

Поскольку длина стропильной ноги больше чем 6,5 м необходимо выполнить ее из двух досок со стыком в нахлестку. Размещаем центр стыка в месте опирания на подкос. Тогда изгибающий момент в стыке при просадке подко­са М1 = 378,4 кН*см.

Стык рассчитываем аналогично стыку прогонов. Принимаем длину нахле­стки lнахл=1,5 м= 150см, гвозди диаметром d= 4 мм = 0,4 см и длиной lгв = 100 мм.

Расстояние между осями гвоздевых соединений

150 -3*15*0,4 =132 см.

Усилие воспринимаемое гвоздевым соединением

Q=Mоп /Z=378,4/ 132 =3,29 кН.

Расчетная длина защемления гвоздя с учетом нормируемого предельного зазора между досками δШ =2 мм при толщине доски δД= 5,0 см и длине острия гвоздя l,5d

ар = lгв-δд-δш -l,5d = 100-50-2-1,5*4 = 47,4 мм = 4;74 см.

В расчете нагельного (гвоздевого) соединения:

– толщина более тонкого элемента a=ap=4,74 см;

– толщина более толстого элемента с = δд=5,0 см.

Находим отношение а/с = 4,74/5,0 = 0,948

По прил. Т, находим коэффициент k н =0,36 кН/см2.

Находим несущую способность одного шва одного гвоздя из условий:

– смятия в более толстом элементе

= 0,35*5*0,4*1*1/0,95 = 0,737 кН

– смятия в более тонком элементе

= 0,36*4,74*0,4*1*1/0,95 = 0,718 кН

– изгиба гвоздя

= (2,5* 0,42 + 0,01* 4,742) /0,95=0,674 кН

– но не более кН

Из четырех значений выбираем наименьшее Т = 0,658 кН.

Находим необходимое число гвоздей пгв ≥ Q/T =2,867/0,674=4,254.

Принимаем пгв= 5.

Проверяем возможность установки пяти гвоздей в один ряд. Расстояние между гвоздями поперек волокон древесины S2=4d = 4*0,4 =1,6 см. Расстояние от крайнего гвоздя до продольной кромки доски S3=4d= 4*0,4 =1,6 см.

По высоте стропильной ноги h = 20 см должно поместится

4S2+2Sз=4*1,6+2*1,6 = 9,6 см<20 см. Устанавливаем гвозди в один ряд.

Расчет узла соединения ригеля со стропильной ногой

По сортаменту (прил. М) принимаем ригель из двух досок сечением bxh = 5×15 см каждая. Усилие в стыке сравнительно большое (Н = 12, кН) и может потребовать установки большого количества гвоздей в условиях строй­площадки. Для снижения трудоемкости монтажа покрытия проектируем болто­вое соединение ригеля со стропильной ногой. Принимаем болты диаметром d= 12 мм = 1,2 см.

В стропильной ноге нагели (болты) сминают древесину под углом к волок­нам α = 18,70. По прил. Щ находим соответствующий углу α =18,70 коэффициент kα=0,95.

В расчете нагельного соединения толщина среднего элемента равна ширине стропильной ноги с=5 см, толщина крайнего элемента — ширине доски ригеля а =5 см.

Определяем несущую способность одного шва одного нагеля из условий:

– смятия в среднем элементе = 0,5*5* 1.2*0,95* 1 *1/0,95 = 3,00 кН

– смятия в крайнем элементе = 0,8*5*1,2*1*1/0,95 = 5,05 кН;

– изгиба нагеля = (l,8* 1,22 + 0,02* 52) /0,95=3,17 кН

— но не более кН

Из четырех значений выбираем наименьшее Т=3,00 кН.

Определяем требуемое число нагелей (болтов) при числе швов nш=2

Принимаем число болтов nH=3.

В проверке сечения ригеля на прочность нет необходимости так как он име­ет большой запас прочности.

4. ОБЕСПЕЧЕНИЕ ПРОСТРАНСТВЕННОЙ ЖЕСТКОСТИ И ГЕОМЕТРИЧЕСКОЙ НЕИЗМЕНЯЕМОСТИ ЗДАНИЯ

Submit a Comment

Must be required * marked fields.

:*
:*